
 Result Paper on Public Auditing by using
KERBEROS to Secure Cloud Storage

Ved M. Kshirsagar, Prof. V.S.Gulhane

Information Technology, Computer Science, SGBAU University
Amravati, Maharashtra, India

Abstract—Cloud computing is an environment which enables
convenient, efficient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction. Cloud is kind of centralized
database where many organizations/clients store their data,
retrieve data and possibly modify data. Using cloud storage,
users can remotely store their data and enjoy the on-demand
high-quality applications and services from a shared pool of
configurable computing resources, without the burden of local
data storage and maintenance. Data stored and retrieved in
such a way may not be fully trustworthy so here concept of
TPA (Third Party Auditor) is used. Thus, enabling public
auditability for cloud storage is of critical importance so that
users can resort to a third-party auditor (TPA) to check the
integrity of outsourced data and be worry free. To securely
introduce an effective TPA, the auditing process should bring
in no new vulnerabilities toward user data privacy, and
introduce no additional online burden to user. It will be our
attempt to further extend the result to enable the TPA to
perform audits for multiple users simultaneously and
efficiently. Extensive security by applying various encryption
algorithms and Kerberos as a third party authentication
system shows the proposed schemes are provably secure and
highly efficient.

Keywords— Public Auditing, Cloud Computing, Third Party
Auditor.

I. INTRODUCTION

Cloud computing has been envisioned as the next
generation information technology (IT) architecture for
enterprises, due to its long list of unprecedented advantages
in the IT history: on-demand self-service, ubiquitous
network access, location independent resource pooling,
rapid resource elasticity, usage-based pricing and
transference of risk. While cloud computing makes these
advantages more appealing than ever, it also brings new and
challenging security threats toward user’s outsourced data.
Since cloud service providers (CSP) are separate
administrative entities, data outsourcing is actually
relinquishing user’s ultimate control over the fate of their
data. As a result, the correctness of the data in the cloud is
being put at risk due to the following reasons [4],[5]. CSP
might reclaim storage for monetary reasons by discarding
data that have not been or are rarely accessed, or even hide
data loss incidents to maintain a reputation. In short,
although outsourcing data to the cloud is economically
attractive for long-term large-scale storage, it does not
immediately offer any guarantee on data integrity and

availability. Simply downloading all the data for its
integrity verification is not a practical solution [3].
 It is desirable that cloud only entertains verification
request from a single designated party. To fully ensure the
data integrity and save the cloud user’s computation
resources as well as online burden, it is of critical
importance to enable public auditing service for cloud data
storage, so that users may resort to an independent third-
party auditor (TPA) who has expertise and capable to audit
the outsourced data when needed. Public auditability allows
an external party, in addition to the user himself, to verify
the correctness of remotely stored data [6], [12]. This severe
drawback greatly affects the security of these protocols in
cloud computing. It is an attempt to show the security by
applying various techniques and justify the performance of
proposed schemes through concrete experiments and
comparisons. It is our attempt to provide security to the
cloud by just simply using Kerberos systems for public
auditability. Specifically, proposed scheme achieves batch
auditing where multiple delegated auditing tasks from
different users can be performed simultaneously by the
TPA in a privacy-preserving manner.

II. LITERATURE REVIEW
G. Ateniese et al. are the first to consider public

auditability in their “provable data possession” (PDP)
model for ensuring possession of data files on untrusted
storages. They utilize the RSA-based homo-morphic linear
authenticators for auditing outsourced data and suggest
randomly sampling a few blocks of the file. When used
directly, their protocol is not provably privacy preserving,
and thus may leak user data information to the external
auditor [7]. Juels and B. Kaliski et al.Describe a “proof of
retrievability” (PoR) model, where spot-checking and error-
correcting codes are used to ensure both “possession” and
“retrievability” of data files on remote archive service
systems [9]. Later, Y.Dodis et al. also give a study on
different variants of PoR with private auditability [13]. H.
Shacham and B. Waters design an improved PoR scheme
built from BLS signatures with proofs of security in the
security model defined. Similar to the construction in, they
use publicly verifiable homo-morphic linear authenticators
that are built from provably secure BLS signatures [8]. C.
Wang et al. consider a similar support for partially dynamic
data storage in a distributed scenario with additional feature
of data error localization [3], [10]. C. Erway et al. develop a
skip list based scheme to also enable provable data
possession with full dynamics support. However, the
verification in both protocols requires the linear

Ved M. Kshirsagar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3312 - 3317

3312

combination of sampled blocks as an input, like the designs,
and thus does not support privacy-preserving auditing [2].
Schwarz and Miller propose the first study of checking the
integrity of the remotely stored data across multiple
distributed servers. Their approach is based on erasure-
correcting code and efficient algebraic signatures, which
also have the similar aggregation property as the homo-
morphic authenticator utilized in our approach. R. Curtmola
et al. aim to ensure data possession of multiple replicas
across the distributed storage system. They extend the PDP
scheme in to cover multiple replicas without encoding each
replica separately, providing guarantee that multiple copies
of data are actually maintained [7].

 Privacy Preserving Public Auditing Proposed by
Cong Wang

Public auditing allows TPA along with user to check the
integrity of the outsourced data stored on a cloud & Privacy
Preserving allows TPA to do auditing without requesting
for local copy of the data. It contains 4 algorithms as:

1) Key generation: It is a key generation algorithm
used by the user to setup the scheme.

2) Sin generation: It is used by the user to generate
verification metadata which may include digital
signature.

3) Generation Proof: It is used by CS to generate a
proof of data storage correctness.

4) Verify proof: Used by TPA to audit the proofs It is
divided into two parts as setup phase and audit
phase [3],[4],[5].

 Using EAP
S. Marium proposed use of Extensible authentication

protocol (EAP) through three ways of hand shake with
RSA. They provide an authentication protocol for cloud
computing, lightweight and efficient as compared to SSL
protocol. Challenge-handshake authentication protocol
(CHAP) is used for authentication [11].

A System and Threat Model

It is considered that a cloud data storage service
involving three different entities, as illustrated in Fig.1: the
cloud user, who has large amount of data files to be stored
in the cloud; the cloud server, which is managed by the
cloud service provider to provide data storage service and
has significant storage space and computation resources
(we will not differentiate CS and CSP hereafter); the third-
party auditor, who has expertise and capabilities that cloud
users do not have and is trusted to access the cloud storage
service reliability on behalf of the user upon request.
Some more problems related with the cloud storage are as
follows :

 Correctness of the data is being put at a risk.
 Not offer any guarantee on data integrity and

availability.
 Also threat of identity spoofing attack.
 Data tempering attack, repudation attack,

Information Disclosure on upload/download attack.
 Denial of service attack.

III. IMPLEMENTED WORK

 While applying this third party auditor i.e.
Kerberos system the network connection is must for
exchange or retrieval of the data by the user. To maintain
the data integrity of data stored on the cloud some proposed
algorithms and encryption techniques are being considered.
By applying various authentication methods, the users are
authenticated properly and security will be achieved this is
the main objective of our proposed work, to make the cloud
storage secure.
During the implementation of this proposed work our
objectives will be as follows:

 Detection probability against the data modification.
 Authentication of user by using third party

authentication.
 Availability of the data.
 Correctness of the data.
 No information leakage of the data.
 No data loss.

With the best level efforts, above one or more tasks or
objectives may be tried to be implemented. For these
objectives to be achieved we considered the following
authentication system and some encryption/decryption
protocols explained below.

A Kerberos As A Trusted Third Party Auditing /
Authentication System protocol

Kerberos is a computer network authentication protocol
which works on the basis of 'tickets' to
allow nodes communicating over a non-secure network to
prove their identity to one another in a secure manner. Its
designers aimed it primarily at a client–server model and it
provides mutual authentication—both the user and the
server verify each other's identity. Kerberos protocol
messages are protected against eavesdropping and replay
attacks. Kerberos builds on symmetric key
cryptography and requires a trusted third party, and
optionally may use public-key cryptography during certain
phases of authentication.

Ved M. Kshirsagar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3312 - 3317

3313

Fig 2: Working of Third Party Auditing / Authentication (Kerberos)

The protocol is described in detail below.

1) User Client-based Logon: A user enters a
username and password on the client machines. Other
credential mechanisms allow the use of public keys in
place of a password. The client transforms the password
into the key of a symmetric cipher. This either uses the
built in key scheduling or a one-way hash depending on
the cipher-suite used.

2) Client Authentication: The client sends a clear
text message of the user ID to the AS requesting services
on behalf of the user. (Note: Neither the secret key nor the
password is sent to the AS.) The AS generates the secret
key by hashing the password of the user found at the
database (e.g. Active Directory in Windows Server).The
AS checks to see if the client is in its database. If it is, the
AS sends back the following two messages to the client:
 Message A: Client/TGS Session Key encrypted

using the secret key of the client/user.
 Message B: Ticket-Granting-Ticket (which

includes the client ID, client network address, ticket
validity period, and the client/TGS session key)
encrypted using the secret key of the TGS.

Once the client receives messages A and B, it attempts to
decrypt message A with the secret key generated from the
password entered by the user. If the user entered password
does not match the password in the AS database, the client's
secret key will be different and thus unable to decrypt
message A. With a valid password and secret key the client
decrypts message A to obtain the Client/TGS Session Key.
This session key is used for further communications with
the TGS. (Note: The client cannot decrypt Message B, as it
is encrypted using TGS's secret key.) At this point, the
client has enough information to authenticate itself to the
TGS.

3) Client Service Authorization: When requesting
services, the client sends the following two messages to
the TGS:

 Message C: Composed of the TGT from message B
and the ID of the requested service.

 Message D: Authenticator (which is composed of
the client ID and the timestamp), encrypted using
the Client/TGS Session Key.

Upon receiving messages C and D, the TGS retrieves
message B out of message C. It decrypts message B using
the TGS secret key. This gives it the "client/TGS session
key". Using this key, the TGS decrypts message D
(Authenticator) and sends the following two messages to
the client:

 Message E: Client-to-server ticket (which includes
the client ID, client network address, validity
period and Client/Server Session Key) encrypted
using the service's secret key.

 Message F: Client/Server Session Key encrypted
with the Client/TGS Session Key.

4) Client Service Request: Upon receiving messages E
and F from TGS, the client has enough information to
authenticate itself to the SS. The client connects to the SS
and sends the following two messages:

 Message E from the previous step (the client-to-
server ticket, encrypted using service's secret key).

 Message G: a new Authenticator, which includes
the client ID, timestamp and is encrypted
using Client/Server Session Key.

 The SS decrypts the ticket using its own secret key
to retrieve the Client/Server Session Key. Using the
sessions key, SS decrypts the Authenticator and
sends the following message to the client to
confirm its true identity and willingness to serve
the client:

 Message H: the timestamp found in client's
Authenticator plus 1, encrypted using
the Client/Server Session Key.

The client decrypts the confirmation using the Client/Server
Session Key and checks whether the timestamp is correctly
updated. If so, then the client can trust the server and can
start issuing service requests to the server.The server
provides the requested services to the client.[14]

B RSA Algorithm

RSA is an algorithm for public-key
cryptography that is based on the presumed difficulty
of factoring large integers, the factoring problem. RSA
stands for Ron Rivest, Adi Shamir and Leonard Adleman,
who first publicly described the algorithm in 1977. Clifford
Cocks, an English mathematician, had developed an
equivalent system in 1973, but it wasn't declassified until
1997.

The RSA algorithm involves key generation, encryption
and decryption.

RSA involves a public key and a private key. The public
key can be known by everyone and is used for encrypting
messages. Messages encrypted with the public key can only
be decrypted in a reasonable amount of time using the
private key. The keys for the RSA algorithm are generated
the following way:

Ved M. Kshirsagar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3312 - 3317

3314

1. 1.Choose two distinct prime numbers p and q.
2. For security purposes, the integer’s p and q should

be chosen at random, and are of similar bit-length.
Prime integers can be efficiently found using
a primarily test.

3. Compute n = p*q.
4. n is used as the modulus for both the public and

private keys. Its length, usually expressed in bits, is
the key length.

5. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1), where φ
is Euler's totient function.

6. Choose an integer e such that 1 < e <φ(n) and gcd
(e, φ(n)) = 1; i.e. e and φ(n) are coprime.

e is released as the public key exponent.
e having a short bit-length and small Hamming

weight results in more efficient encryption – most
commonly 216 + 1 = 65,537. However, much
smaller values of e (such as 3) have been shown to
be less secure in some settings.

7. Determine d as d−1 ≡ e (mod φ(n)), i.e., d is
the multiplicative inverse of e (modulo φ(n)).

This is more clearly stated as solve
for d given d⋅e ≡ 1 (mod φ(n))

This is often computed using the extended
Euclidean algorithm.

d is kept as the private key exponent.
The public key consists of the modulus n and the public (or
encryption) exponent e. The private key consists of the
modulus n and the private (or decryption) exponent d,
which must be kept secret. p, q, and φ(n) must also be kept
secret because they can be used to calculate d.[15]
1) A working example

Here is an example of RSA encryption and decryption.
 Choose two distinct prime numbers, such as

 and .
 Compute n = p*q giving

 Compute the totient of the product as φ(n) =

(p − 1)(q − 1) giving

.
 Choose any number 1 < e < 3120 that is coprime to

3120. Choosing a prime number for e leaves us only
to check that e is not a divisor of 3120.

Let
 Compute d, the modular multiplicative

inverse of e (mod φ(n)) yielding

 The public key is (n = 3233, e = 17). For a
padded plain text message m, the encryption function
is

 The private key is (n = 3233, d = 2753). For an

encrypted cipher text c, the decryption function
is c2753(mod 3233).

 For instance, in order to encrypt m = 65, we calculate

 To decrypt c = 2790, we calculate

D Advanced Encryption System

The Advanced Encryption Standard (AES) is a
specification for the encryption of electronic data
established by the U.S. National Institute of Standards and
Technology (NIST) in 2001. It is based on
the Rijndael cipher developed by
two Belgian cryptographers, Joan Daemen and Vincent
Rijmen, who submitted a proposal to NIST during the AES
selection process. Rijndael is a family of ciphers with
different key and block sizes. For AES, NIST selected three
members of the Rijndael family, each with a block size of
128 bits, but three different key lengths: 128, 192 and 256
bits.
AES has been adopted by the U.S. government and is now
used world wide. It supersedes the Data Encryption
Standard (DES), which was published in 1977. The
algorithm described by AES is a symmetric-key algorithm,
meaning the same key is used for both encrypting and
decrypting the data.
AES is based on a design principle known as a substitution-
permutation network, and is fast in both software and
hardware. Unlike its predecessor DES, AES does not use
a Feistel network. AES is a variant of Rijndael which has a
fixed block size of 128 bits, and a key size of 128, 192, or
256 bits.
The key size used for an AES cipher specifies the number
of repetitions of transformation rounds that convert the
input, called the plaintext, into the final output, called the
cipher text. The number of cycles of repetition are as
follows:
 10 cycles of repetition for 128-bit keys.
 12 cycles of repetition for 192-bit keys.
 14 cycles of repetition for 256-bit keys.
Each round consists of several processing steps, each
containing five similar but different stages, including one
that depends on the encryption key itself. A set of reverse
rounds are applied to transform ciphertext back into the
original plaintext using the same encryption key.

 Key Expansion—round keys are derived from the
cipher key using Rijndael's key schedule. AES
requires a separate 128-bit round key block for
each round plus one more.

 Initial Round
 Add Round Key—each byte of the state is

combined with a block of the round key using
bitwise XOR.

 Rounds
1. Sub Bytes—a non-linear substitution step

where each byte is replaced with another
according to a lookup table.

2. Shift Rows—a transposition step where each
row of the state is shifted cyclically a certain
number of steps.

Ved M. Kshirsagar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3312 - 3317

3315

3. Mix Columns—a mixing operation which
operates on the columns of the state,
combining the four bytes in each column.

4. Add Round Key
 Final Round (no Mix Columns)

1. Sub Bytes
2. Shift Rows
3. Add Round Key.

The Sub Bytes step :

In the Sub Bytes step, each byte in the state is replaced
with its entry in a fixed 8-bit lookup table, S; bij = S(aij).
The Shift Rows step

In the Shift Rows step, bytes in each row of the state
are shifted cyclically to the left. The number of places each
byte is shifted differs for each row.
The Mix Columns step

In the Mix Columns step, each column of the state is
multiplied with a fixed polynomial c(x).
The Mix Columns function takes four bytes as input and
outputs four bytes, where each input byte affects all four
output bytes. Together with Shift Rows, Mix
Columns provides diffusion in the cipher.
The Add Round Key step

In the Add Round Key step, each byte of the
state is combined with a byte of the round sub key using
the XOR operation (⊕) [16].

This third party security will be applicable to any
organization who wants to secure their data storage and
deliberately want to restrict unwanted users to access the
data and also provide layering to the database so that layer
1 users only access the data from layer 1 at the data storage.
Our attempt is to make such a security policy by which the
database is accessible to the proper users of that particular
layer.

E Multilevel Security Model:
A system state is defined to be "secure" if the only

permitted access modes of subjects to objects are in
accordance with a security policy. To determine whether a
specific access mode is allowed, the clearance of a subject
is compared to the classification of the object (more
precisely, to the combination of classification and set of
compartments, making up the security level) to determine if
the subject is authorized for the specific access mode. The
clearance/classification scheme is expressed in terms of a
lattice. The model defines two mandatory access
control (MAC) rules and one discretionary access
control (DAC) rule with three security properties:

1. The Simple Security Property - a subject at a given
security level may not read an object at a higher
security level (no read-up).

2. The ★-property (read "star"-property) - a subject
at a given security level must not write to any
object at a lower security level (no write-down).

3. The Discretionary Security Property - use of
an access matrix to specify the discretionary
access control.

The transfer of information from a high-sensitivity
document to a lower-sensitivity document may happen in
the MLS model via the concept of trusted subjects. Trusted
Subjects are not restricted by the ★-property. Untrusted
subjects are. Trusted Subjects must be shown to be
trustworthy with regard to the security policy. This security
model is directed toward access control and is characterized
by the phrase: "no read up, no write down." Compare
the Biba model, the Clark-Wilson model and the Chinese
Wall model.

With this multilevel security, users can create content only
at or above their own security level (i.e. secret researchers
can create secret or top-secret files but may not create
public files; no write-down). Conversely, users can view
content only at or below their own security level (i.e. secret
researchers can view public or secret files, but may not
view top-secret files; no read-up).

IV. CONCLUSION

This paper is an attempt to implement such a system
that will provide a complete security to the cloud storage by
applying a Kerberos type of authentication third party and
various algorithms for communication between clients,
cloud, and third party

REFERENCES

[1] A.Mohta, Lalit Kumar Awasti,“Cloud Data Security while using
Third Party Auditor”, International Journal of Scientific &
Engineering Research, Volume 3,Issue 6, ISSN 2229-8 June 2012.

[2] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proceedings of the 16th ACM
conference on Computer and communications security, ser. CCS ’09.
New York, NY, USA: ACM, 2009, pp. 213–222

[3] C. Wang, Q. Wang and K. Ren, “Ensuring Data Storage security in
Cloud Computing”, IEEE Conference Publication, 17th International
Workshop on Quality of Service (IWQoS), 2009

[4] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public
auditing for storage security in cloud computing,” in Proc.of IEEE
INFOCOM’10, March 2010.

[5] C. Wang, Sherman S. M. Chow, Q. Wang, K. Ren and W. Lou,
“Privacy-Preserving Public Auditing for Secure Cloud Storage”,
IEEE Transaction on Computers I, vol. 62, no. 2, pp.362-375 ,
February 2013.

[6] Shrinivas, “Privacy-Preserving Public Auditing in Cloud Storage
security”, International Journal of computer science and Information
Technologies, vol 2, no. 6, pp.2691-2693, ISSN: 0975-9646, 2011

[7] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM conference on Computer and
communications security, ser. CCS ’07. New York, NY, USA: ACM,
2007, pp. 598–609.

[8] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. of Asiacrypt 2008, vol. 5350, Dec 2008

Ved M. Kshirsagar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3312 - 3317

3316

[9] Juels, B. Kaliski. “Pors: proofs of retrievability for large files[C]”,
Proceedings of CCS 2007. Alexandria, VA,USA, 2007. 584-597.

[10] Q. Wang, C. Wang, K.Ren, W. Lou and Jin Li “Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing”, IEEE Transaction on Parallel and Distributed System,
vol. 22, no. 5, pp. 847 –859,2011.

[11] S. Marium, Q. Nazir, A. Ahmed, S. Ahthasham and Aamir M. Mirza,
“Implementation of EAP with RSA for Enhancing The Security of
Cloud Computing”, International Journal of Basic and Applied
Science, vol 1, no. 3, pp. 177-183, 2012

[12] Wang Shao-hu, Chen Dan-we, Wang Zhi-weiP, Chang Su-qin,
“Public auditing for ensuring cloud data storage security with zero
knowledge Privacy” College of Computer, Nanjing University of
Posts and Telecommunications, China, 2009

[13] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proceedings of the 6th Theory of
Cryptography Conference on Theory of Cryptography, ser. TCC ’09,
Berlin, Heidelberg, 2009, pp. 109–127

[14] http//www.google.co.in/Wikipedia/Kerberos
[15] http//www.google.co.in/Wikipedia/RSA algorithm
[16] http//www.google.co.in/Wikipedia/AESalgorpthm

Ved M. Kshirsagar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3312 - 3317

3317

